Name of Faculty: Sana Bharti

Discipline: MCA

Semester: 4th

Subject: Data Mining and Warehousing (MCA-16-43)

Lesson Plan Duration: 15 Weeks

Workload (Lecture) Per Week: 4 Lecture Per Week

Week	Theory	Theory		
	Lecture Day	Topic(Including Assignment /Test)		
1 st 1 st		Data Warehouse: Basic concepts, A Brief History		
	2 nd	Difference between Operational Database Systems and Data Warehouse, Architecture for a Data Warehouse		
	3 rd	Fact and Dimension Tables, Data Warehouse Schemas, Data Cube : A Multidimensional Data Model		
	4 th	A Multidimensional Data Model ,Data Cube Computation Methods, Typical OLAP Operations		
2 nd	5 st	Typical OLAP Operations, Data Warehouse Design and Usage		
	6 th	Data Warehouse Design and Usage , Data Warehouse Implementation		
	7 th	Data Generalization by Attribute Oriented Induction. Assignment1: 1) Explain Data Warehouse 2)Differencebetween operational Database and data warehouse 3) Explain OLAP operations		
	8 th	Data Generalization by Attribute Oriented Induction.		

3 rd	9 th	Test of Unit1
	10 th	Data Mining: Introduction: Motivation,
	t th	Importance Knowledge Discovery Process
	11 ^m	. Importance Knowledge Discovery Process
		Data Mining Functionalities
	12 th	Data Mining Functionalities
		Interesting Patterns
	13 th	Interesting Patterns Classification of Data
4 th		Mining Systems, Major issues
	14^{th}	Classification of Data Mining Systems,
		Major issue Data Objects and Attribute Types.
		Data Preprocessing: Overview, Data Cleaning
	15 th	Data Objects and Attribute Types. Data
	th	Preprocessing: Overview. Data Cleaning
	16 ^m	Data Integration, Data Reduction
∽ th	17 th	Data Transformation and Data Discretization
5	18 th	Data Mining Models: Directed Data Mining Models
	19 th	Directed Data Mining Models , Directed Data Mining Methodology
	20^{th}	Directed Data Mining Methodology
	21 st	Data Mining Models: Directed Data Mining
6 th		Models
	22^{nd}	Directed Data Mining Models
	23 rd	Directed Data Mining Methodology
	24 th	Directed Data Mining Methodology
~ th	25 th	Data Visualization
/	26 th	Outliers, Types of Outliers
		1) Explain data mining functionalities
		2) Explain steps of Data perprocessing
		in detail
		3) Explain directed data mining models
		4) What are outliers and explain its types
	27 th	Challenges of Outlier Detection.
	28 th	Revision of UNIT 2
oth	29 th	Test of Unit 2
8	30 th	Data Mining Classical Techniques: Statistics

		– Similarity Models
	31 st	Similarity Models
	32 nd	Similarity Models
4	33 rd	Steps for Designing Similarity Models
9 ^m	34 th	Table Lookup Model
	35 th	Table Lookup Model
	36 th	Clustering- Requirement for Cluster Analysis
10 th	37 th	Clustering Methods- Partitioning Methods, Hierarchical Methods,
	38 th	Density-Based Methods
	39 th	Grid-Based Methods, Evaluation of Clustering
	40 th	Nearest Neighborhood- Memory Based Reasoning, Challenges of Memory Based Reasoning, Assignment 3:
		 Explain clustering in detail. Difference between Hierarchical clustering and Partitioning clustering Explain nearest neighbourhood method in detail
11 th	41^{st}	Revision of Unit 3
11	42 nd	Test of Unit 3
	43 rd	Data Mining Next Generation Techniques: Decision Tree
	44 th	Decision Tree Induction, Attribute Selection Measures
1 oth	45 th	Tree Pruning
12	46 th	Association Rule Mining- Market Basket Analysis
	47 th	Frequent Itemset Mining using Apriori Algorithm
	48 th	Improving the Efficiency of Apriori
1 oth	49 th	Neural Network- Bayesian Belief Networks,
13-	50 th	Bayesian Belief Networks,, Classification by Backpropagation
	51 st	Classification by Backpropagation

	52 nd	Data Mining Applications,
14 th	53 rd	 Data Mining Trends and Tools. Assignment 4: Explain Decision Tree Induction and attribute selection measure Explain Apriori Algorithm Explain Bayesian Belief Network
	54 th	Data Mining Trends and Tools.
	55 th	Revision of Unit 4
	56 th	Test of Unit 4
15 th	57 th	Revision of Unit 1
	58 th	Revision of Unit 2
	59 th	Revision of Unit 3
	60 th	Revision of Unit 4

Name of Faculty: Dr. Narinder Rana

Discipline: MCA

Semester: 4th Semester

Subject: Programming in JAVA (MCA-14-41)

Lesson Plan Duration: **13 Weeks**

Workload Per Week: 4 Lecture, 2 Practical labs of 2 lectures each

	Theory		Practical		
Week	Lecture Day	Topic (Including Assignment Test)	Practical Day	Торіс	
1 st	1 st	Features of Java	1 st	WAP to find absolute difference	
	2 nd	Data types in Java		double.	
	3 rd	Operators & expressions	2 nd	WAP to find is a number is teen number or not	
	4 th	Control structures			
2 nd	5 th	Arrays in Java	3 rd	WAP to print diamond of number	
	6 th	Classes, objects & methods	-		
	7 th	Constructors	4 th	WAP to calculate coins, notes and amount for entered denominations.	
	8 th	Garbage collection			
3 rd	9 th	Access qualifiers	5 th	WAP to count occurrence of a number N in an array	
	10 th	String handling and operations		number in in an array.	
	11 th	Character extraction and string	6 th	WAP to print number of days if month and year are entered as two	
	12 th	Searching and modifying strings	-	integer values.	
4 th	13 th	StringBuffer class	7 th	WAP to arrange words of a	
	14 th	Packages and interfaces	1	semence in appradetical order.	
	15 th	Wrapper classes	8 th	WAP to show usage of wrapper	
	16 th	MCQs/Class test			

5 th	17 th	Inheritance	9 th	WAP to show the usage of multilevel inheritance with help	
	18 th	Multilevel inheritance	-	of a real life example.	
	19 th	Method overriding	10 th	WAP to show usage of method	
	20 th	Abstract class		example.	
6 th	21 st	Use of super and final keyword	11 th	WAP to implement and explain usage of an abstract class.	
	22 nd	Exception Handling and exception types			
	23 rd	Uncaught exceptions	12 th	WAP to show implementation of multiple catch clauses with help	
	24 th	Multiple catch clauses	-	of a real life example.	
7 th	25 th	Nested try statements	13 th	WAP to create user defined exception which is through in N is	
	26 th	Creating your own exceptions.		less the 10 or more than 99.	
	27 th	Multithreading, Java thread model	14 th	WAP to show implementation of multithreading with help of a real	
	28 th	Creating multiple threads		life example.	
8 th	29 th	Thread priorities and synchronization	15 th	WAP to show usage of inter thread communication with help	
	30 th	Inter-thread communication		of a real life example.	
	31 st	Suspending, resuming and stopping threads	16 th	WAP to run an Applet using Appletviewer.	
	32 nd	MCQs/Class test			
9 th	33 rd	Applets: Local & remote Applets	17 th	Implement the above Applet in a browser, preferably Mozilla	
	34 th	Applet architecture		Firefox.	
	35 th	Passing Parameters to Applets	18 th	WAP to show usage of parameter passing in Applet with help of a	
	36 th	Applet graphics		real life example.	
10 th	37 th	Adapter class	19 th	WAP to draw a smiley using graphics in Applet.	
	38 th	Input/Output streams		8-47	
	39 th	Reading and writing console input	20 th	WAP to show usage of interface in Java with help of a real life	
	40 th	Collections Interfaces & classes		example.	
11 th	41 st	Delegation Event Model	21 st		

	42 nd	MCQs		
	43 rd	Class test	22 nd	WAP to draw a smiley using
	44 th	AWT classes and window fundamentals		
12 th	45 th	Working with graphics, color & fonts	23 rd	Color the above smiley with appropriate colors and run as
	46 th	AWT controls		standalone AWT class
	47 th	Layout managers	24 th	WAP to show usage of various layouts in Java Use same controls
	48 th	Working with menus		on all layouts.
13 th	49 th	Swing Classes	25 th	WAP to implement a calculator using Swing classes
	50 th	JFrames		
	51 st	Java Beans	26 th	WAP to use Servlet for creating music app using Swing classes
	52 nd	Servlet classes & life cycle		and database.

Name of Faculty: Safurti

Discipline: MCA

Semester: 4th

Subject: Advanced Computer Architecture (MCA-14-42) Lesson Plan Duration: 15 Weeks

Workload (Lecture) Per Week: 4 Lecture Per Week

Week	Theory	ory		
	Lecture Day	Topic(Including Assignment /Test)		
1 st	1 st	Computational Model: Basic computational models		
	2^{nd}	evolution and interpretation of computer architecture		
	3 rd	concept of computer architecture as a multilevel hierarchical framework		
	4 th	Classification of parallel architectures		
2 nd	5 st	Relationships between programming languages and parallel architectures		
	6 th	Parallel Processing: Types and levels of parallelism		
	7 th	Instruction Level Parallel (ILP) processors		
	8 th	dependencies between instructions		
3 rd	9 th	principle and general structure of pipelines		
	10 th	performance measures of pipeline, pipelined processing of integer		
	11^{th}	Boolean, load and store instructions		
	12 th	VLIW architecture		
4 th	13 th	Code Scheduling for ILP-Processors -Basic block scheduling		
	14 th	loop scheduling		
	15 th	global scheduling.		
	16 th	Assignment 1:		

5 th	17 th	 What is code scheduling? Explain software pipelining technique of code scheduling. Explain the structure of pipeline for Boolean, load and store instructions. Revision of Assignment 1
	18	MCQs of Unit-1
	19 th	Superscalar Processors: Emergence of superscalar processors
	20 st	Tasks of superscalar processing –parallel decoding
∠th	21^{th}	superscalar instruction issue, shelving
6	22 th	register renaming, parallel execution
	23 th	Test of Unit-I
	24 st	preserving sequential consistency of instruction execution and exception processing
$7^{ m th}$	25 nd	comparison of VLIW & superscalar processors
	26 rd	Branch Handling: Branch problem
	27 th	Approaches to branch handling –delayed branching
	28^{th}	Branch detection and prediction schemes
e th	29 th	Branch penalties and schemes to reduce them
0	30 th	Multiway branches, guarded execution.
	31 th	Assignment 2: 1) Compare VLIW AND SUPERSCALAR ARCHITECTURES. 2) What are dynamic prediction schemes for branches? Explain.
	32^{th}	Revision of Assignment 2
o th	33 th	MCQs of Unit-II
,	34 st	MIMD Architectures: Concepts of distributed
	35 nd	shared memory MIMD architectures
	36 rd	UMA, NUMA models
	37 th	CC-NUMA & COMA models
10 th	38 st	Problems of scalable computers

	39 th	Direct Interconnection Networks: Linear
		array, ring
	41 st	Test of Unit-II
1 1 th	42 nd	chordal rings
11	43 rd	star, tree
	44 th	2D mesh, barrel shifter, hypercubes.
		Assignment 3: 1) Explain the following static interconnection networks along with their performance parameters; barrel shifter, ring, 2D Torus and 3-cube connected cycles.
12 th	45 th	Revision of Assignment 3
12	46 th	MCQs of Unit-III
	47 th	Dynamic interconnection networks: single shared buses
	48 th	comparison of bandwidths of locked
13 th	49 th	pended & split transaction buses, arbiter logics crossbar, multistage networks –omega
	50 th	Test of Unit-III
	51 st	Butterfly Cache coherence problem
	52 nd	hardware based protocols –snoopy cache protocol
	53 rd	directory schemes, hierarchical cache coherence protocols
14 th		software based protocols
	54 th	Assignment 4: 1) What is centralized arbiter logic? What are limitations of this logic? How daisy chaining overcome these limitations? 2) What is MIN? Explain the working of Butterfly network with suitable diagram.
	55 55	Kevision of Assignment 4
15 th	56"	MCQs of Unit-IV
	57 ^m	Revision of University Question paper 2015

58 th	Test of Unit-IV
59 th	Test of University Question paper 2015
60 th	Revision of University Question paper 2016

Name of Faculty: Richa Gupta

Discipline: MCA

Semester: 4th

Subject: Computer Graphics

Lesson Plan Duration: 15 Weeks

Workload (Lecture) Per Week: 4 Lectures,6 Practicals Per Week

Week	Theory		Practical	Practical		
	Lecture Day	Topic(including assignment Test)	Practical Day	Торіс		
1 st	1 st	Introduction to Computer Graphics and its applications	1 st	Write a program to create a chess board using DDA line algorithm		
	2 nd	Components and working of Interactive Graphics	2 nd	Write a program to create a chess board using DDA line algorithm		
	3 rd	Video Display Devices: Raster scan and Random Scan displays	3 rd 4 th	Write a program to create a chess board using DDA line algorithm Write a program to implement Bresenham's line drawing algorithm with all values of slopes		
	4 th	Display Processors; Resolution, Aspect Ratio, Refresh CRT	5 th	Write a program to implement Bresenham's line drawing algorithm with all values of slopes. Write a program to implement Presenham's line drawing		
				algorithm with all values of slopes.		
2 nd	5 ^m	Display Processors; Resolution, Aspect Ratio, Refresh CRT	7 ^m	Write a program to implement Bresenham's line drawing algorithm with all values of slopes.		
	6 th	interlacing; Color CRT monitors	8 th	Write a program to display the lines of different styles and		

				different thickness
	7 th	LookUp tables	9 th	Write a program to display the lines of different styles and different thickness
			10 th	Write a program to display the lines of different styles and different thickness
	8 th	Plasma Panel and LCD monitors	11 th	Write a program to implement Midpoint circle generation algorithm.
			12 th	Write a program to implement Midpoint circle generation algorithm.
3rd	9 th	Interactive Input and Output Devices: keyboard, mouse, trackball, joystick, light pen, digitizers	13 th	Write a program to implement Midpoint circle generation algorithm.
	10 th	Interactive Input and Output Devices: keyboard, mouse, trackball, joystick, light pen, digitizers	14 th	Write a program to implement Midpoint circle generation algorithm.
	11 th	Interactive Input and Output Devices: keyboard, mouse, trackball_ioystick_light_pen	15 th	Write a program to create a wireframe model of globe using equation of ellipse.
		digitizers	16 th	Write a program to create a wireframe model of globe using equation of ellipse.
	12 th	Image scanners, Touch Panels; Voice systems; printers	17 th	Write a program to create a wireframe model of globe using equation of ellipse.
			18 th	Write a program to create a wireframe model of globe using equation of ellipse.
4th	13 th	Image scanners, Touch Panels; Voice systems; printers	19 th	Write a program to implement Bresenham's circle generation algorithm.
	14 th	plotters; Graphics Software; Coordinate Representations	20 th	Write a program to implement Bresenham's circle generation algorithm.
	15 th	plotters; Graphics Software;	21 st	Write a program to implement Bresenham's circle generation

I

		Coordinate Representations		algorithm.
			22 nd	Write a program to create and fill the two dimensional object by using boundary fill algorithm
	16 th	MCQs	23 rd	Write a program to create and fill the two dimensional object by using boundary fill algorithm
			24 th	Write a program to create and fill the two dimensional object by using boundary fill algorithm
5 th	17 th	Class test	25 th	Write a program to create (without using built in function) a cube by implementing translation algorithm by translating along
				a) X-axisb) Y-axis andc) X and Y plane
	18 th	Drawing Geometry: Symmetrical and Simple DDA line drawing algorithm	26 th	Write a program to create (without using built in function) a cube by implementing translation algorithm by translating along
				a) X-axisb) Y-axis andc) X and Y plane
	19 th	Bresenham's line Algorithm	27 th	Write a program to create (without using built in function) a cube by implementing translation algorithm by translating along
				a) X-axisb) Y-axis andc) X and Y plane
			28 th	Write a program to create (without using built in function) a cube by implementing translation algorithm by translating along
				a) X-axisb) Y-axis andc) X and Y plane
	20 th	loading frame buffer	29 th	Write a program to create (without using built in function)

				and rotate
				 a) given an angle b) Around x and y axis a triangle by implementing rotation algorithm.
			30 th	Write a program to create (without using built in function) and rotate
				 a) given an angle b) Around x and y axis a triangle by implementing rotation algorithm.
6 th	21 st	Symmetrical DDA for drawing circle	31 st	Write a program to create (without using built in function) and rotate
				 a) given an angle b) Around x and y axis a triangle by implementing rotation algorithm.
	22 nd	Polynomial method for circle drawing	32 nd	Write a program to create (without using built in function) a triangle by implementing scaling algorithm by zooming/un- zooming along
				a) X-axisb) Y-axis andc) X and Y plane
	23 rd	Circle drawing using polar coordinates	33 rd	Write a program to create (without using built in function) a triangle by implementing scaling algorithm by zooming/un- zooming along
				a) X-axisb) Y-axis andc) X and Y plane
			34 th	Write a program to create (without using built in function) a

				triangle by implementing scaling algorithm by zooming/un- zooming along
				a) X-axisb) Y-axis andc) X and Y plane
	24 th	Bresenham's circle drawing	35 th	Write a program to create (without using built in function) a triangle by implementing scaling algorithm by zooming/un- zooming along
				a) X-axisb) Y-axis andc) X and Y plane
			36 th	Write a program to create (without using built in function) a Cube by implementing reflection algorithm
				a) X-axis, b) Y-axis
7 th	25 th	Generation of ellipse; parametric representation of cubic curves	37 th	Write a program to create (without using built in function) a Cube by implementing reflection algorithm
				a) X-axis, b) Y-axis
	26 th	drawing Bezier curves	38 th	Write a program to create (without using built in function) a Cube by implementing reflection algorithm
				a) X-axis, b) Y-axis
	27 th	Filled-Area Primitives: Flood fill algorithm	39 th	Write a program to create (without using built in function) a square by implementing shear algorithm along
				a) X-axis

				b) Y-axis
			40 th	Write a program to create (without using built in function) a square by implementing shear algorithm along a) X-axis b) Y-axis
	28 th	Boundary fill algorithm	41 st	Write a program to create (without using built in function) a square by implementing shear algorithm along
				b) Y-axis
			42 nd	Write a program to animate a flag using Bezier Curve algorithm
8 th	29 th	Scan-line polygon fill algorithm	43 rd	Write a program to animate a flag using Bezier Curve algorithm
	30 th	MCQs	44 th	Write a program to animate a flag using Bezier Curve algorithm
	31 st	Class test	45 th	Write a program to clip lines using Liang-Barsky algorithm
			46 th	Write a program to clip lines using Liang-Barsky algorithm
	32 nd	2-D Transformations:	47 th	Write a program to clip lines using Liang-Barsky algorithm
		translation	48 th	Write a program to clip lines using Cohen Sutherland clipping algorithm
9 th	33 rd	Rotation	49 th	Write a program to clip lines using Cohen Sutherland clipping algorithm
	34 th	Scaling	50 th	Write a program to clip lines using Cohen Sutherland clipping algorithm

	35 th	matrix representations and	51 st	Write a program to clip lines
		homogeneous coordinates		using Mid-Point Subdivision
				algorithm
				C
			52^{nd}	Write a program to clip lines
				using Mid-Point Subdivision
				algorithm
	36 th	matrix representations and	53 rd	Write a program to clip lines
		homogeneous coordinates		using Mid-Point Subdivision
				algorithm
			≂ .th	
			54 ^m	Develop different chart options
				with the given inputs by applying
				DDA algorithm
10 th	27 th	composite transformations	55 th	Develop different short options
10	57	composite transformations	55	Develop different chart options
				with the given inputs by applying
				DDA algorithm
	38 th	general pivot point rotation	56 th	Develop different chart options
	50	general proof point fotation	50	with the given inputs by applying
				DDA algorithm
				DDA algorithm
	39 th	general fixed point scaling	57 th	Develop different circular
				patterns using midpoint circle
				generation algorithm
				0 0
			58^{th}	Develop different circular
				patterns using midpoint circle
				generation algorithm
	, o th		– – th	
	40 ^m	Shearing; Reflection	59 ^m	Develop different circular
				patterns using midpoint circle
				generation algorithm
			60 th	Davalan a sorran sayar with 2D
			00	objects
11 th	41 st	Reflection about an arbitrary	61 st	Develop a screen saver with 2D
		line	-	objects.
	42 nd	2-D Viewing: window, viewport	62 nd	Develop a screen saver with 2D
				objects.
	43 rd	2-D viewing transformation	63 rd	Develop a screen saver with 3D
				objects
			e 4th	
			64 ⁴¹	Develop a screen saver with 3D
1	1		1	objects

	44 th	zooming, Panning	65 th	Develop a screen saver with 3D objects
			66 th	Develop different chart options with the given inputs by applying DDA algorithm
12 th	45 th	Clipping operations: point and line clipping	67 th	Develop different chart options with the given inputs by applying DDA algorithm
	46 th	Cohen-Sutherland line clipping	68 th	Develop different chart options with the given inputs by applying DDA algorithm
	47 th	mid-point subdivision line clipping	69 th	Develop different chart options with the given inputs by applying DDA algorithm
			70 th	Develop different line styles using Bresenham's algorithm
	48 th	Liang-Barsky line Clipping	71 st	Develop different line styles using Bresenham's algorithm
			72 nd	Develop different line styles using Bresenham's algorithm
13 th	49 th	Sutherland-Hodgman polygon clipping	73 rd	Develop different line styles using Bresenham's algorithm
	50 th	Weiler-Atherton polygon Clipping Pointing and positioning techniques	74 th	Develop different circular patterns using midpoint circle generation algorithm
	51 st	3-D Graphics: 3-D modeling of objects, 3D transformation matrices for translation	75 th	Develop different circular patterns using midpoint circle generation algorithm
			76 th	Develop different circular patterns using midpoint circle generation algorithm
	52 nd	scaling and rotation, parallel projection: Orthographic and oblique	77 th	Develop different circular patterns using midpoint circle generation algorithm

		projection	78 th	Develop a screen saver with text with given attributes
14 th	53 rd	perspective projection; Hidden surface removal	79 th	Develop a screen saver with text with given attributes
	54 th	Zbuffer, depth-sorting, area subdivision	80 th	Develop a screen saver with text with given attributes
	55 th	BSP-Tree method; Ray casting	81 st	Develop a screen saver with text with given attributes
			82 nd	Write a program to perform scaling on triangular object
	56 th	Shading: Modelling light intensities, Gouraud shading	83 rd	Write a program to perform scaling on triangular object
			84 th	Write a program to perform scaling on triangular object
15 th	57 th	Phong shading; Introduction to Animation, Tweening	85 th	Write a program to implement flood fill algorithm.
	58 th	Morphing, Fractals	86 th	Write a program to implement flood fill algorithm.
	59 th	MCQs	87 th	Write a program to implement flood fill algorithm.
			88 th	Write a program to perform rotation on rectangular object with respect to arbitrary point.
	60 th	Class test	89 th	Write a program to perform rotation on rectangular object with respect to arbitrary point.
			90 th	Write a program to perform rotation on rectangular object with respect to arbitrary point.